If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+105n-1026=0
a = 1; b = 105; c = -1026;
Δ = b2-4ac
Δ = 1052-4·1·(-1026)
Δ = 15129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{15129}=123$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(105)-123}{2*1}=\frac{-228}{2} =-114 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(105)+123}{2*1}=\frac{18}{2} =9 $
| 81^x+4=729^3x-3 | | -12=77(2a-3)-(8a-9) | | (u-6)^2-12=0 | | 10/7m+3=1 | | 4x+5x-3x-5=1 | | -12x-4+42=17x+8 | | -3x-(2-6x)=25 | | (2/x)+2=(3/5x)+(21/10) | | 7x+3x-2x-5=51 | | y=3Y+14 | | 3y–9=9-15y. | | x2+(x/2)^2-36=0 | | 1.25x2-72=0 | | 1.5x^2-72=0 | | (u+7)^2=2u^2+13u+19 | | (4+5i)/(3-7i)= | | (r+5)(r-5)=0 | | 8x-30=60+6x | | 5x+9=2x+42 | | 3x-130+10=240 | | 60x12-x=605 | | 95+x+20=160-3x | | 48/6+x=571 | | 34=13-(x-6) | | 500=0.75x-(900+0.25x) | | 4x+17=109 | | 7(x-3)=-8(x+4)+36 | | 38*3+x=235 | | 5x^2+100x=0 | | 64/8-6*4+2=x | | 4(2x-3)=9-3(2+×) | | n^-18n-83=5 |